

Most unwanted

Be familiar with the common pests and diseases in your orchard so you can distinguish them from exotic organisms. Report any suspected exotic organisms.

Peach twig borer

(Anarsia lineatella)

- Major pest of peaches, nectarines, apricots and plums.
- Very similar damage to the attack of oriental fruit moth.
- Present in Europe, Middle East, North Africa & North America.
- The first sign of its presence may be wilting or flagging of new growth in spring time. Later generations can damage the fruit.
- Larvae are 12mm long and adults are 8-12mm long.

Oriental fruit fly

(Bactrocera dorsalis, B. papayae & B. carambolae)

- OFF is a fruit fly complex of three very similar Bactrocera species.
- attacking over 300 hosts.
- Tanzania, California & Hawaii.
- the fruit causing rots through secondary infections.
- 6-8mm long.

Photo – Scott Bauer, ARS - USDA

- Major pest of summerfruit. Highly invasive,
- Present in South Asia, Indonesia, Kenya,
- Fruit damage occurs when larvae feed inside
- Larvae are 7.5-10mm long, adults are

Photo – G.T. O'Loughlin, Department of Agriculture, Bugwood.org

Queensland fruit fly

• QFF is the most damaging horticultural pest

• Found in NSW, NT, Qld & Vic. Also, New

• Fruit damage is caused by larvae feeding

• QFF larvae are 9mm long and adults are

inside the fruit followed by pulp decay due to

secondary fungal and bacterial infections.

Caledonia & French Polynesia.

(Bactrocera tryoni)

Affects all summerfruit.

in Australia.

7mm long.

Peach fruit fly

(Bactrocera zonata)

- Polyphagous species with a very high reproductive potential. Peaches are the main summerfruit affected by this fruit fly.
- Produces several generations in a year with a rapid dispersal ability.
- Present in South Asia & North East Africa.
- Damage typical of other fruit flies.
- Larvae are 7-10mm long, adults are 5-6mm long.

Mediterranean fruit fly

(Ceratitis capitata)

- All commercial summerfruit affected through larvae feeding on flesh and pulp decay caused by secondary pathogens.
- High economic impact affecting production costs and market access.
- Medfly is a highly invasive pest present in several countries across Europe, Africa & South America. It is also present in Western Australia.
- Traps baited with male lures can be used to monitor Medfly where present.
- Medfly adults are 3-5mm long and larvae are 7-8mm long.

Photo – Scott Bauer, ARS - USDA, Bugwood.org

Plum curculio



Spotted wing drosophila Brown marmorated

European brown rot

Asian brown rot

 (Conotrachelus nenuphar) Presence restricted to the east of the Rocky Mountains in the USA. All commercial summerfruit and apples are potential hosts. Damage caused through feeding and oviposition. Larvae feeding causes internal pulp damage and exit holes on the skin. Oviposition leaves a half-moon shaped scar. Damaged fruit drops early. Larvae are white with a brown head, curved and legless. They are 6-9mm long and adults are 5mm long. 	 (Drosophila suzukii) SWD is a serious economic threat to cherries and other soft summerfruit. Native to Asia, present in North America, Europe, Chile & Argentina. High reproductive capacity and dispersal ability. 13 generations per year. SWD larvae cause damage by feeding on the pulp inside fruit. The oviposition scars are a point of entry for secondary pathogens causing rots. SWD adults are 2-3mm long. Males have spots on their wings. 	 stink bug (Halyomorpha halys) A major nuisance in USA mid-Atlantic and Pacific Northwest regions. Polyphagous and highly invasive, serious losses on apples and peaches. Present in Europe, USA, Chile, Japan, Korea & Taiwan. Feeding injuries produce sunken areas of damage. Chemical control has resulted in increased use of sprays causing secondary outbreaks. BMSB present five nymphal stages. Adults are 12-17mm long. 	 (Monilinia fructigena) Not as bad as other Monilinia but has serious effects on market access. Currently present in many countries in Europe and Asia. It spreads readily by means of Conidia carried by the wind or insects. Infections start with the flowers and continue on mature fruit. Symptoms on ripe fruits are small, circular brown spots that quickly begin rotting. 	 (Monilinia polystroma) Initially known only in Japan. Currently in Europe and parts of Asia. Dispersal most likely to occur through infected stock or fruit. Causes very similar symptoms to other Monilinia pathogens. Can only be distinguished from other brown rots by laboratory testing. Disease incidence can significantly be reduced by removing rotten/mummified fruit early in the season.
Photo – E. Levine, The Ohio State University, Bugwood.org	Photo — McEvey, Shane (2017), Australian Museum	Photo – David R. Lance, USDA APHIS PPQ, Bugwood.org	Photo – Rasbak 2010	Photo – Algirdas 2006

Sharka disease (Plum pox virus)

- One of the most destructive diseases of summerfruit.
- PPV is easily transmitted by many aphid species and nursery grafting and affects all commercial summerfruit species.
- Present in Europe, Asia, Chile, Canada & Argentina.
- Symptoms vary widely causing chlorotic spots on leaf and fruit deformity.
- Where possible, work only with certified plant propagation material.

Photo – European and Mediterranean Plant Protection Organization,

Bugwood.org

European cherry fruit fly

(Rhagoletis cerasi)

Photo – Jeff DeLong

- The most important pest of cherries in Europe. Also found in Asia.
- Tissue around oviposition puncture marks will appear soft and brownish.
- Larvae cause internal feeding damage and rots. Losses may reach 100%.
- Yellow sticky traps are highly recommended to monitor adults.
- Adults are 3.5-4mm long. Larvae third stage are 5-6mm.

Phony peach disease

(Xylella fastidiosa) • Peaches are a major host of *X.fastidiosa*

- causing phony peach disease. Affects xylem vessels blocking transport of
- mineral nutrients and water. Infected peach trees appear more compact, leafier and darker green.
- · Production falls and become economically unviable after 3-5 years.
- Sharpshooters are reported as major vectors for this bacterium.
- Control methods include elimination of infected trees and vectors.

Photo – M. Scortichini, Istituto Sperimentale per la Frutticoltura, Rome (IT)

For detailed information, see the **Factsheets** under **Biosecurity** on **www.summerfruitnz.co.nz**

STOP To report any suspected exotic organism, call MPI on:

0800 80 99 66

If you have any queries please contact Juan Rosales on 022 513 1953 or email juan@summerfruitnz.co.nz